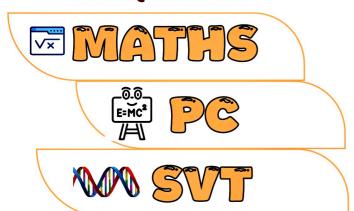
- Cours en ligne
- **Cours presentiels**



Nos programmes:

Niveaux: Moyen/Secondaire

Programme Wolof

Apprentissage avec des cours exclusivement en Wolof

Programme Social

Prise en charge d'éléves avec des problèmes de moyens

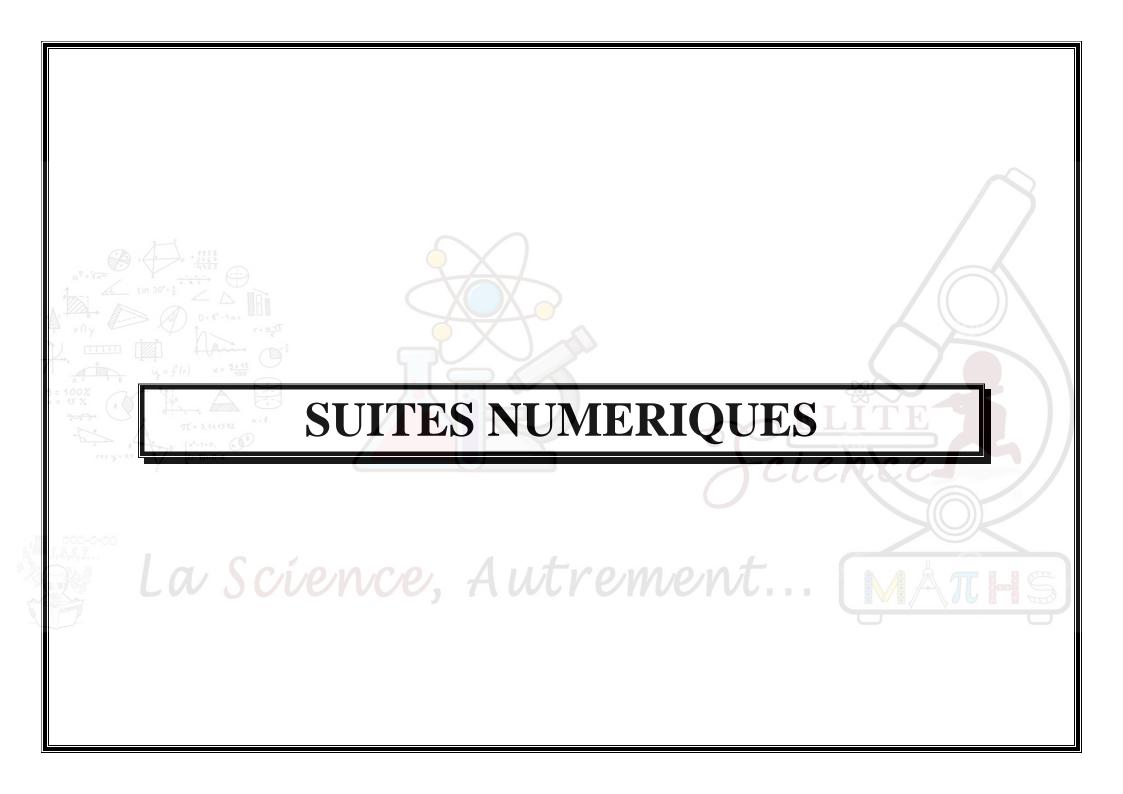
Tous les élèves

Renforcement de capacité en ligne

Prépa Concours

Préparation des concours comme ESP - EMS - ENSA - IPSL ISFAR ENSAE

77 106 98 79 77 575 04 18



Généralités sur les suites numériques :

- La suite (u_n) est croissante si pour tout $n, u_{n+1} \ge u_n$
- La suite (u_n) est décroissante si pour tout $n, u_{n+1} \le u_n$
- La suite (u_n) est p- périodique, p entier positif, si pour tout n, $u_{n+p} = u_n$
- Méthode pour étudier le sens de variation d'une suite :
 - ✓ Comparaison de $u_{n+1} u_n$ à 0

Soit (u_n) est une suite:

$$\begin{cases} Si \ u_{n+1} - u_n \ge 0 \ alors \ (u_n) \ est \ croissante \\ Si \ u_{n+1} - u_n \le 0 \ alors \ (u_n) \ est \ décroissante \end{cases}$$

✓ Comparaison de $\frac{u_{n+1}}{u_n}$ à 1

Soit (u_n) est une suite à termes strictement positifs:

$$\begin{cases} Si \; \frac{u_{n+1}}{u_n} \geq 1 \; alors \; (u_n) \; est \; croissante \\ Si \; \frac{u_{n+1}}{u_n} \leq 1 \; alors \; (u_n) \; est \; décroissante \end{cases}$$

• La suite (u_n) est monotone si elle est croissante ou décroissante

Suites majorées – suites minorées – suites bornées

- La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n, u_n \leq M$
- La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n, u_n \ge m$
- La suite (u_n) est bornée si elle est à la fois minorée et majorée

• La suite (u_n) est bornée

 \circ *Si* pour tout $n, m \leq u_n \leq M$

 \circ *Si* pour tout n, $|u_n| \leq M$

La Science, Autrement...

♦ Suites arithmétiques :

La suite (u_n) est arithmétique s'il existe un réel r tel que pour tout n, $u_{n+1} = u_n + r$

• Définition :

 $u_{n+1} = u_n + r$; r étant la raison de la suite arithmétique

• Calcul de u_n en fonction de n:

$$\begin{cases} u_n = u_0 + nr \\ u_n = u_1 + (n-1)r \\ u_n = u_p + (n-p)r \quad en \ g\'{e}n\'{e}ral \end{cases}$$

• Somme des termes consécutifs :

$$u_p + u_{p+1} + \dots + u_n = \sum_{k=p}^n u_k = (n-p+1)\left(\frac{u_p + u_n}{2}\right)$$
 en général

$$(\circ 1 + 2 + \dots + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \text{ en particulier}$$

• Convergence:

Une suite arithmétique (u_n) converge si et seulement si sa raison r=0

Suites géométriques :

La suite (u_n) est géométrique s'il existe un réel q tel que pour tout $n, u_{n+1} = qu_n$

• Définition :

 $u_{n+1} = qu_n$; q étant la raison de la suite géométrique

• Calcul de u_n en fonction de n:

$$\begin{cases} u_n = u_0 \times q^n \\ u_n = u_1 \times q^{n-1} \\ u_n = u_p \times q^{n-p} \quad en \ g\'{e}n\'{e}ral \end{cases}$$

• Somme des termes consécutifs :
$$(q \neq 1)$$

• $u_P + u_{p+1} + \dots + u_n = \sum_{k=p}^n u_k = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$ en général

$$\int_{0}^{\infty} 1 + q + q^{2} + \dots + q^{n} = \sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}$$
 en particulier

• Convergence:

Une suite géométrique (u_n) converge vers 0 si et seulement si |q| < 1

♦ Démonstration par récurrence :

Pour démontrer que pour tout entier $n \ge n_0$, une propriété P_n est vraie, il faut :

- Initialisation : vérifier que P_{n_0} est vraie
- **Hérédité**: supposer que P_n est vraie pour un certain $n \ge n_0$ et démontrer que P_{n+1} est vraie
- Conclusion: pour tout $n \ge n_0$, P_n est vraie
 - ♦ Limite de suites : suites convergentes suites divergentes :
- Une suite convergente vers un réel ℓ est une suite qui admet une limite ℓ quand n tend vers $+\infty$: $\lim_{n\to+\infty}u_n=\ell$
- Une suite divergente vers $\pm \infty$ est une suite qui admet une limite $\pm \infty$ quand n tend vers $+\infty$: $\lim_{n \to +\infty} = \pm \infty$
- Une suite divergente tout court est une suite qui n'admet pas de limite quand n tend vers $+\infty$

- ♦ Convergence des suites monotones :
- Toute suite croissante et majorée converge
- Toute suite décroissante et minorée converge
- ♦ Théorèmes de comparaison :

Théorème 1:

$$\begin{vmatrix}
\circ v_n \le u_n \le w_n \\
\circ \lim_{n \to +\infty} v_n = \ell \\
\circ \lim_{n \to +\infty} w_n = \ell
\end{vmatrix} \Rightarrow \lim_{n \to +\infty} u_n = \ell$$

Théorème 1 (bis):

$$\begin{vmatrix}
\circ |u_n - \ell| \le v_n \\
\circ \lim_{n \to +\infty} v_n = 0
\end{vmatrix} \Longrightarrow \lim_{n \to +\infty} u_n = \ell$$

Théorème 2:

$$\left\{\begin{array}{c} \circ u_n \geq v_n \\ \circ \lim_{n \to +\infty} v_n = +\infty \end{array}\right\} \Longrightarrow \lim_{n \to +\infty} u_n = +\infty$$

$$\begin{vmatrix}
\circ u_n \le w_n \\
\circ \lim_{n \to +\infty} w_n = -\infty
\end{vmatrix} \implies \lim_{n \to +\infty} u_n = -\infty$$