
- Cours en ligne
- **Cours presentiels**

Nos programmes:

Niveaux: Moyen/Secondaire

Programme Wolof

Apprentissage avec des cours exclusivement en Wolof

Programme Social

Prise en charge d'éléves avec des problèmes de moyens

Tous les élèves

Renforcement de capacité en ligne

Prépa Concours

Préparation des concours comme ESP - EMS - ENSA - IPSL ISFAR ENSAE

77 106 98 79 77 575 04 18

ELITE SCIENCE

Cours en présentiel / Cours en ligne Tél: 77-106-98-79 (W) / 76-312-52-24 Mail: elite.science.sn@gmail.com

Niveau: Tle S2

SEQ4: CALCUL DE PRIMITIVES

1) Définition et propriétés

- 1. <u>Définition:</u> soient deux fonctions f et F définies sur I; F est une primitive de f sur I si et seulement si F'(x)=f(x)
- Exemple: soit f(x) = 2x+1 une primitive de f peut être $\frac{F(x)=x^2+x}{x}$
- 2. Propriétés
- -• Si f est défini sur I, toute primitive de f s'écrit F(x)+K (K=constante)
- Si f est défini sur I avec $x_0 \in I$ et un réel y_0 , il existe une unique primitive F de f sur I tel que $F(x_0) = y_0$
- Si on prend l'exemple précédent, la primitive de f tel que F(0)=1 serait $F(x)=x^2+x+1$
- Toute fonction continue sur I admet au minimum une primitive sur I

2) Primitives usuelles

Fonctions	Primitives
0	C = constante
а	ax+ c
x	$\frac{1}{2}x^2 + c$
x ⁿ	$\frac{1}{n+1}X^{n+1} + C$
$\frac{1}{x^2}$	$-\frac{1}{x}$ + c
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}+c$
$\frac{1}{\sqrt{\mathbf{x}}}$	$2\sqrt{x} + c$
sinx	-cosx + c
COSX	sinx + c
$1+\tan^2 x = \frac{1}{\cos^2 x}$	tanx + c
$\frac{1}{x}$	Inx
e ^x	e ^x

Fonction	Primitive
kU'	kU
U'+V'	U+V
U'U	$\frac{1}{2}$ U ²
U'U ⁿ	$\frac{1}{n+1}$ U ⁿ⁺¹
$\frac{U'}{U^n} \ n > 1$	1
$\overline{U^{n}}^{n} > 1$	$-{(n-1)U^{n-1}}$
U'	2√U
$\frac{\mathbf{U}'}{\sqrt{\mathbf{U}}}$	
U'V+V'U	UV
$\mathbf{U}'\mathbf{V} - \mathbf{V}'\mathbf{U}$	$\frac{\mathbf{U}}{\mathbf{V}}$
$\overline{\mathbf{V}^2}$	$\overline{\mathbf{v}}$
U'cosU	sinU
U'sinU	-cosU
$\frac{U'}{\cos^2 U} = U'(1 + \tan^2 U)$	tanU
Cos(ax+b)	1
	$\frac{1}{a}\sin(ax+b)$
Sin(ax+b)	$-\frac{1}{a}\cos(ax+b)$
1	
$\overline{\cos^2(ax+b)}$	$\frac{1}{a}\tan^2(ax+b)$
$\frac{U'}{U}$	ln U
$U'e^U$	e^U

3) Applications

• Calculer les primitives suivantes:

•
$$f(x) = 4x^3 - 5x^2 - 1$$

•
$$g(x) = 5x(5x^2 - 7)^4$$

$$h(x) = 2\cos x \sin^4 x$$

Correction

•
$$F(x) = x^4 - \frac{5}{3}x^3 - x + K$$

•
$$g(x) = \frac{1}{2} \times 10x(5x^2 - 7)^4$$

•
$$G(x) = \frac{1}{2} \times \frac{1}{5} (5x^2 - 7)^5 = \frac{1}{10} (5x^2 - 7)^5 + K$$

$$\bullet H(x) = \frac{2}{5}\sin^5 x + K$$

